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A fast parallel iterative method is proposed for the solution of linear equations
arising from finite element discretization of the time harmonic coupled fluid–solid
systems in fluid pressure and solid displacement formulation. The fluid and the solid
domains are decomposed into nonoverlapping subdomains. Continuity of the solu-
tion is enforced by Lagrange multipliers. The system is augmented by duplicating
the degrees of freedom on the wet interface. The original degrees of freedom are
then eliminated and the resulting system is solved by iterations preconditioned by
a coarse space correction. In each iteration, the method requires the solution of one
independent local acoustic problem per subdomain and the solution of a global prob-
lem with several degrees of freedom per subdomain. Computational results show
that the method is scalable with the problem size, frequency, and the number of
subdomains. The method generalizes the FETI-H method for the Helmholtz equa-
tion to coupled fluid–elastic scattering. The number of iterations is about same as
for the FETI-H method for the related Helmholtz problem with Neumann bound-
ary condition instead of an elastic scatterer if enough coarse space functions are
used. Convergence behavior is explained from the spectrum of the iteration operator
and from numerical near decoupling of the equations in the fluid and in the solid
regions. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In this paper, a new iterative substructuring method is proposed for the solution of the
coupled fluid–elastic time harmonic scattering problem. Iterative solution of the coupled
problem by alternating between the fluid and the elastic problem is known, cf., Achil’diev
and Nazhmidinov [1] or Cummings and Feng [2]. The new method extends the FETI-H

95

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



96 JAN MANDEL

domain decomposition method, proposed by De La Bourdonnaye et al. [3] and Farhat et al.
[4, 5] for the solution of the Helmholtz equation, to an iterative method for the coupled
problem.

The new method for the coupled problem is designed so that the interaction between the
fluid and the solid is resolved at the same time as the solution within the fluid and the elastic
domains, and the fluid part of the iteration operator reduces to the operator in FETI-H in
the limit when the scatterer becomes rigid. The method also uses the same basic building
blocks in the fluid subdomain as FETI-H, making software reuse easier.

The FETI method was originally proposed by Farhat and Roux [6] for solving linearized
elasticity problems. The basic idea of all FETI-type methods is to decompose the domain
into nonoverlapping subdomains and to use Lagrange multipliers to enforce that the values
of the degrees of freedom coincide on the interfaces between the subdomains. The original
degrees of freedom are then eliminated, leaving a dual system for the Lagrange multipliers,
which is solved iteratively. To achieve scalability with the number of subdomains, a coarse
problem is required. For elasticity, the coarse problem formed naturally from nullspaces
of the local subdomain matrices results in a scalable method, cf., Farhat et al. [7] and
Mandel and Tezaur [8]. The general coarse problem in FETI was introduced by Farhat and
Mandel [9, 10]; this is the approach used in FETI-H and in the present method, with plane
waves as the generators of the coarse problem. For further information on FETI, see [11–15]
and references therein. The modifications of the FETI method for the Helmholtz equation
involve replacing the conditions for the continuity of the solution and its normal derivatives
on subdomain interfaces by their complex linear combination to obtain a radiation condition,
inspired by Després [16]. The present modification of FETI for elastic scattering uses a
complex linear combination of continuity conditions for the displacement and the traction,
related to a method by Bennethum and Feng [17].

Related variants of the FETI method for the Helmholtz equation of scattering were
proposed by De La Bourdonnaye et al. [3], Farhat et al. [18], and Tezaur et al. [19]. For
other work on iterative methods for indefinite problems arising from scattering, see, e.g.,
[20–24].

The distinctive feature of the present method is the treatment of the wet interface. The fluid
region and the elastic region are divided into nonoverlapping subdomains. The division into
subdomains does not need to match across the wet interface. This comes naturally because,
due to the selection of the variational form of the problem, the wet interface conditions
are enforced only weakly. The degrees of freedom on the wet interface are duplicated and
new equations are added to enforce the equality of the duplicates. The original degrees of
freedom in all subdomains are then eliminated. The intersubdomain Lagrange multipliers
and the duplicates of the degrees of freedom on the wet interface are retained and form the
reduced problem, which is solved iteratively. The diagonal blocks for the intersubdomain
Lagrange multipliers in the reduced problems are exactly same as in the FETI-H method
and its straightforward extension to elasticity. There are no Lagrange multipliers across the
wet interface. Instead, the fluid and the elastic region communicate by way of the duplicated
primal variables on the wet interface only. This primal–dual approach is reminiscent of the
dual–primal FETI method (FETI-DP) for positive definite problems [25, 26].

Another important feature of the present method is scaling. While scaling of different
physical fields is routine, here we benefit from the fact that as the stiffness of the scatterer
approaches infinity, the fluid and elastic parts of the discretized coupled problem become
uncoupled in the limit.
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The coarse space of FETI-H consists of plane waves for the Lagrange multipliers be-
tween the fluid subdomains. The present method includes also plane waves for the mul-
tipliers on interfaces between the elastic regions, and for the primal variables on the wet
interface. When the same number of coarse functions is used in each of the two added
categories as for FETI-H, the number of iterations is similar to the iteration count for the
FETI-H method for the same problem with a rigid scatterer.

The present formulation of the method is for bounded regions only. While the formulation
of the method is dimension independent, numerical results are given only for a prototype
implementation in 2D. Performance in 3D, further development of the method, theoretical
analysis, and parallel implementation will be reported elsewhere.

The paper is organized as follows. Section 2 introduces the notation. In Section 3, we
review the FETI-H method as a starting point. In Section 4, a straightforward extension is
proposed for scattering in an elastic medium. The new method for the coupled fluid–elastic
problem is presented in Section 5. Explanations of the convergence properties of the method
are given in Section 6. Implementation details are discussed in Section 7. Complexity of the
algorithm is addressed in Section 8. Section 9 contains computational results, and Section 10
is the conclusion.

2. NOTATION

The space H 1(�) is the Sobolev space of functions with square integrable first-order
generalized derivatives. Functions are denoted by p, u, etc. The corresponding vectors of
values of degrees of freedom are p, u. Matrices are denoted by A, B, . . . . The symbol T

denotes the transpose. Quantities associated with subdomain�s are denoted by superscript s,

e.g., ps, ps . Block vectors or matrices where each block consists of subdomain vectors or
matrices are denoted as û, Â, and after scaling, as ũ, Ã. The external normal vector is
denoted by ν. The symbol ≈ means “approximately equal” and � means “much less than.”
Finally, ‖f‖ is the �2 norm and of a vector and ‖A‖ is the spectral norm of a matrix.

3. THE FETI-H METHOD FOR THE HELMHOLTZ EQUATION

In this section, we review the FETI-H method as a starting point in a form suitable for
our purposes. For more details, see [3–5].

Consider a time harmonic acoustic scattering problem in a bounded domain � ⊂ �n, n =
2 or 3, filled with fluid that has speed of sound c f and vibrates at angular frequency ω. The
scatterer occupies the domain �e ⊂ �̄e ⊂ �, and, in this section, the scatterer is rigid.
The fluid domain is � f = � \ �̄e; cf., Fig. 1. Let ∂� be decomposed into disjoint subsets
∂� = �d ∪ �n ∪ �a .

The fluid pressure amplitude p is governed by the Helmholtz equation,

�p + k2 p = 0 in � f , (1)

where k = ω/c f , with the boundary conditions

p = p0 on �d ,
∂p

∂ν
= 0 on �n,

∂p

∂ν
+ ikp = 0 on �a, (2)
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FIG. 1. Model 2D problem.

and

∂p

∂ν
= n on ∂�e. (3)

The domain � f is decomposed into nonoverlapping subdomains

�̄ f =
N f⋃

s=1

�̄s
f . (4)

The normal to ∂�s
f is denoted by νs . It is well known that under reasonable conditions,

Eq. (1) is equivalent to the decomposed form �ps + k2 ps = 0 in �s
f , s = 1, . . . , N f , with

the continuity conditions for p and its normal derivative on the interfaces between the
subdomains,

ps = pt ,
∂ps

∂νs
= −∂pt

∂ν t
, on ∂�s ∩ ∂�t . (5)

Multiplying (1) by a test function q and integrating by parts using the boundary conditions,
one obtains the standard variational form,

p − p0 ∈ V f , −
∫
� f

∇ p∇q + k2
∫
� f

pq − ik
∫
�a

pq =
∫

∂�e

np, ∀q ∈ V f , (6)

where p0 is an extension of the boundary data to a function p0 ∈ H 1(� f ), and V f = {q ∈
H 1(� f ) | q = 0 on �d}. A conforming discretization of (6) is obtained by replacing V f by a
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finite element space V h
f ⊂ V f . Functions in the finite element space have the representation

p = ∑m
i=1 piφi , where {φ1, . . . , φm} is a basis of V h

f . The discretized system is

(−K f + k2M f − ikG f )p = r, (7)

where K f , M f , G f , and r are the stiffness matrix, the mass matrix, the boundary stiffness
matrix, and the right-hand side vector, respectively, given by

pT K f q =
∫
� f

∇ p · ∇q, pT M f q =
∫
� f

pq, pT G f q =
∫
�a

pq,

(8)

qT r = −
∫
� f

∇ p0 · ∇q + k2
∫
� f

p0q − ik
∫
�a

p0q +
∫

∂�a

nq.

Let the subdomains �s
f consist of union of elements. Define subdomain matrices by

subassembly,

psT Ks
f q =

∫
�s

f

∇ p · ∇q, psT Ms
f qs =

∫
�s

f

pq, psT Gs
f qs =

∫
�a

pq, (9)

where ps denotes the vector of the entries of p that are associated with �s
f . We will use

block vectors and corresponding partitioned matrices,

p̂ =




p1

...

pN f


, K̂ f =




K1
f . . . 0

...
. . .

...

0 . . . KN f

f


, M̂ f =




M1
f . . . 0

...
. . .

...

0 . . . MN f

f


. (10)

Let

N f =




N1
f

...

NN f

f




be the 0 − 1 matrix of the global to local map of the subdomain degrees of freedom, so that
p̂ = N f p. Then the global matrices can be written as assembly of the subdomain matrices,

K f = NT
f K̂ f N f , M f = NT

f M̂ f N f , G f = NT
f Ĝ f N f . (11)

It is easy to find r̂ so that r = NT
f r̂. Then the discrete problem (7) is equivalent to (−K̂ f +

k2M̂ f − ikĜ f )p̂ = r̂, where p = NT
f p̂.

Now choose a matrix B f = [B1
f , . . . , BN f

f ] such that the condition B f p̂ = 0 is a discrete
version of the first constraint in (5), that is, the condition that the values of the same degrees
of freedom on two different subdomains coincide. We assume that B f p̂ = 0 if and only if
p̂ = N f p for some p. Introducing Lagrange multipliers λ f for the constraint B f p̂ = 0, we
obtain the decomposed problem[−K̂ f + k2M̂ f − ikĜ BT

f

B f 0

] [
p̂

λ f

]
=

[
r̂
0

]
. (12)



100 JAN MANDEL

It is easy to see that (12) is equivalent to (7) in the sense that p is a solution of (7) if and
only if p̂ = N f p solves (12) with some λ f ; cf., [27].

To obtain an iterative substructuring method, we will eliminate the primary variables
p̂ from the system (12) and solve the resulting reduced system iteratively. However, the
matrix −K̂ f + k2M̂ f may be close to singular due to near-resonance, except for diagonal
blocks that correspond to subdomains with the radiation boundary condition. This motivates
replacing the intersubdomain continuity conditions (5) by the complex linear combination

ps = pt , σst ikps + ∂ps

∂νs
= σst ikpt − ∂pt

∂νt
, on ∂�s ∩ ∂�t , (13)

where σ st
f ∈ {0, ±1}, σ st

f = −σ ts
f . This means that the decomposed problem (12) is replaced

by the regularized system

[
Â f BT

f

B f 0

] [
p̂

λ f

]
=

[
r̂
0

]
, (14)

where

Â f = −K̂ f + k2M̂ f − ikĜ f + ikR̂ f , (15)

and the regularization matrix R̂ f is given by

R̂ f =




R1
f . . . 0

...
. . .

...

0 . . . RN f

f


, psT Rs

f qs =
N f∑
t=1
t �=s

σ st
f

∫
∂�s

f ∩∂�t
f

pq. (16)

Clearly, NT
f R f N f = 0, that is, the contributions to the subdomain matrices in the subdomain

assembly cancel, so (14) and (12) are equivalent. It is shown in [18] that if for a given s, all
σ st

f ≥ 0 or all σ st
f ≤ 0 with some σ st

f �= 0, then Âs
f is invertible. For details on strategies

for choosing σ st
f to guarantee this, see [18].

After eliminating the primary variables by p̂ = Â−1
f (r̂ − BT

f λ f ), we obtain the reduced
system for the Lagrange multipliers λ f ,

F f λ f = g f , where F f = −B f Â−1
f BT

f , g f = B f Â−1
f r̂. (17)

The reduced system (17) is solved iteratively, with preconditioning by subspace correc-
tion, using a coarse space with few degrees of freedom per subdomain as follows.

Because the same iterative method applies to generalizations to elasticity and to the
coupled problem, we drop the subscript f and denote the vector of unknowns by x rather
than p and b rather than g.

Let Q be a matrix with the same number of rows as F. The columns of Q span the coarse
space. FETI-H enforces the condition that the residual is orthogonal to the coarse space,

QT (Fx − b) = 0, (18)
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by adding a correction from the coarse space in each iteration, which results in the precon-
ditioned system

PFx = Pb, (19)

where

P = I − Q(QT FQ)−1QT F. (20)

Since it follows from (19) that Fx − b ∈ Range Q, Eqs. (18) and (19) together imply that
Fx = b.

The system (19) is solved by Krylov space iterations. The initial approximation is chosen
to satisfy (18). Since all increments are in the span of residuals of (19) and QT FP = 0, all
iterates satisfy (18).

For the Helmholtz equation in � f , the matrix Q = Q f is chosen as

Q f = B f Y f , Y f =




Y1
f . . . 0

...
. . .

...

0 . . . YN f

f


, (21)

where the columns of Ys
f are finite element interpolants in �s of plane waves yk(x) =

eikx ·dk in several directions |dk | = 1. In 2D, we choose an even number of directions equidis-
tant on the unit circumference. Since with each direction, the opposite direction is also
included, the column space of Q is same as the column space of the complex conjugate of
Q, so it does not matter if the transpose or the conjugate transpose are used in (18).

4. EXTENSION TO ELASTIC SCATTERING

Consider the time harmonic elastodynamic equation

∇ · τ + ω2ρeu = 0 in �e, (22)

with natural boundary conditions

τ · ν = −pν on ∂�e. (23)

Here, u is the displacement, τ is the stress tensor, ρe is the density of the solid, and p is
given boundary data. For simplicity, we consider an isotropic homogeneous material with

τ = λI (∇ · u) + 2µe(u), ei j (u) = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (24)

where λ and µ are the Lamé coefficients of the solid. Similarly, as in the previous section,
�e is decomposed into nonoverlapping subdomains �1

e, . . . , �
Ne
e , and, under reasonable

conditions [28], Eq. (22) is equivalent to the decomposed form ∇ · τ s + ω2ρeus = 0 in
�s

e, s = 1, . . . , Ne, with the continuity of the displacement and the traction on intersubdo-
main interfaces,

us = ut , τs · νs = −τt · νt , on ∂�s
e ∩ ∂�t

e. (25)
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We have the standard variational formulation of (22) for u ∈ Ve = (H 1(�e))
n ,

−
∫
�e

(λ(∇ · u)(∇ · v) + 2µe(u) : e(v)) + ω2
∫
�e

ρeu · v −
∫
�

p(ν · v) = 0, ∀v ∈ Ve;

the discretization

(−Ke + ω2Me)u = s,

with the matrices and the right-hand side defined by

uT Kev =
∫
�e

(λ(∇ · u)(∇ · v) + 2µe(u) : e(v)), (26)

uT Mev =
∫
�e

ρe(u · v), uT s =
∫
�

q(ν · v); (27)

the block form of the solution and the subdomain matrices

û =




u1

...

uNe


, K̂e =




K1
e . . . 0
...

. . .
...

0 . . . KNe
e


, M̂e =




M1
e . . . 0

...
. . .

...

0 . . . MNe
e


; (28)

the matrix of the global to local mapping Ne; the assembly of subdomain matrices,

Ke = NT
e K̂eNe, Me = NT

e M̂eNe; (29)

the constraint matrix Be, such that Beû = 0 if and only if û = Neu for some u; and the
decomposed problem [

−K̂e + k2M̂e BT
e

Be 0

] [
û
λe

]
=

[
ŝ
0

]
, (30)

where s = NT
e ŝ.

To avoid nearly singular matrices in the subdomains, the intersubdomain conditions are
replaced by their complex linear combination [17]

us = ut , σst iωρeus + τs · νs = σst iωρeut − τt · νt , on ∂�s
e ∩ ∂�t

e,

where σ st
e ∈ {0, ±1}, σ st

e = −σ ts
e , and we obtain the regularized system[

Âe BT
e

Be 0

] [
û
λe

]
=

[
r̂
0

]
, (31)

where

Âe = −K̂e + ω2M̂e + iωR̂e, (32)

and

R̂e =




R1
e . . . 0
...

. . .
...

0 . . . RNe
e


, usT Rs

evs = ρe

Ne∑
t=1
t �=s

σ st
e

∫
∂�s

e∩∂�t
e

(n · u)(n · v).
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After elimination of û, the reduced system with the matrix

Feλe = ge, where Fe = −BeÂ−1
e BT

e , (33)

can be solved iteratively in the same way as in the previous section, with the matrix of the
coarse space generators

Qe = BeYe, Ye =




Y1
e . . . 0
...

. . .
...

0 . . . YNe
e


, (34)

with the columns of Ys
e being interpolants of pressure and shear plane waves in �s

e; cf.,
e.g., [29].

5. ITERATIVE SUBSTRUCTURING FOR COUPLED PROBLEM

We are now ready to consider the coupled problem. The fluid pressure in � f satisfies the
Helmholtz equation (1) and the boundary conditions (2). The displacement of the solid in
�e satisfies the elastodynamic equation (22). Let � = ∂�e be the wet interface. On �, the
fluid pressure and the solid displacement satisfy the interface conditions

ν · u = 1

ρ f ω2

∂p

∂ν
, τ · ν = −pν, (35)

where ρ f is the fluid density. The equations in (35) model the continuity of normal dis-
placement and the balance of forces, respectively; cf., e.g., [29].

Multiplying Eqs. (1) and (22) by test functions and integrating by parts using the boundary
and the interface conditions, we obtain the standard variational form [30]

p − p0 ∈ V f , u ∈ Ve,

−
∫
� f

∇ p · ∇q + k2
∫
� f

pq − ik
∫
�a

pq − ω2
∫
�

ρ f (ν · u)q = 0,

−
∫
�e

(λ(∇ · u)(∇ · v) + 2µe(u) : e(v)) + ω2
∫
�e

ρeu · v −
∫
�

p(ν · v) = 0,

∀q ∈ V f , v ∈ Ve.

The finite element discretization is[−K f + k2M f − ikG f −ρ f ω
2T

−ρ f ω
2TT ρ f ω

2(−Ke + ω2Me)

] [
p
u

]
=

[
r
0

]
, (36)

where K f and M f are as in (8), Ke and Me are as in (26) and (27), and T is given by

qT Tv =
∫
�

q(ν · v).

The second equation in (36) was multiplied ρ f ω
2 to symmetrize the system.
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FIG. 2. Model 2D problem decomposed in 5 × 5 fluid and 2 × 2 solid subdomains.

The fluid and the solid domains are decomposed into nonoverlapping subdomains; cf.,
Fig. 2. Again, we assume that the subdomains that are unions of elements. Introducing
Lagrange multipliers λ f and λe for the constraints B f p = 0 and Beu = 0, we get the
system of linear equations in block form,




−K̂ f + k2M̂ f − ikĜ −ω2ρ f T̂ BT
f 0

−ω2ρ f T̂T ω2ρ f (−K̂e + ω2M̂e) 0 BT
e

B f 0 0 0

0 Be 0 0







p̂
û
λ f

λe


 =




r̂
0
0
0


, (37)

where K̂ f , M̂ f , Ĝ f , K̂e, and M̂e are given by (10), (28), and

T̂ =




T11 . . . T1,Ne

...
. . .

...

TN f ,1 . . . TN f ,Ne


, qsT T̂st vt =

∫
�∩∂�s

f ∩∂�t
e

q(ν · v).

Again, the system (37) is equivalent to (36). Adding the regularization matrices on the
interfaces between the solid subdomains, we obtain the equivalent regularized system




Â f −ω2ρ f T̂ BT
f 0

−ω2ρ f T̂T ω2ρ f Âe 0 BT
e

B f 0 0 0

0 Be 0 0







p̂
û
λ f

λe


 =




r̂
0
0
0


, (38)

where Â f and Âe are given by (15) and (32), respectively.
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At this point, we would like to eliminate the primary variables p̂ and û to obtain a system
in the Lagrange multipliers λ f , λe only. For the coupled system, however, the elimination
does not reduce to independent problems in all subdomains because subdomains across the
wet interface are coupled via the matrix T̂. So, first we augment the system by duplicating
the degrees of freedom on the wet interface as follows.

Since the value of T̂û depends only on the entries of û that correspond to degrees of
freedom on �, we have T̂û = T̂Jeû� , where û� = JT

e û and Je is the matrix of the operator
of embedding a subvector û� into û by adding zero entries. Similarly, T̂T p̂ = T̂T J f p̂� ,
where p̂� = JT

f p̂. Adding p� and u� as new variables, we obtain the augmented system
equivalent to (38),




Â f 0 BT
f 0 0 −ω2ρ f T̂Je

0 ω2ρ f Âe 0 BT
e −ω2ρ f T̂T J f 0

B f 0 0 0 0 0

0 Be 0 0 0 0

JT
f 0 0 0 −I 0

0 JT
e 0 0 0 −I







p̂
û
λ f

λe

p̂�

û�




=




r̂
0
0
0
0
0




. (39)

Because the variables in a coupled system typically have vastly different scales, we use
symmetric diagonal scaling to get the scaled system




Ã f 0 B̃T
f 0 0 −T̃Je

0 Ãe 0 B̃T
e −T̃T J f 0

B̃ f 0 0 0 0 0

0 B̃e 0 0 0 0

JT
f 0 0 0 −I 0

0 JT
e 0 0 0 −I







p̃

ũ

λ̃ f

λ̃e

p̃�

ũ�




=




r̃

0

0

0

0

0




, (40)

where the matrices and the vectors scale as

Ã f = D f Â f D f , Ãe = ω2ρ f DeÂeDe, T̃ = ω2ρ f D f T̂De, (41)

B̃ f = E f B f D f , B̃e = EeBeDe, r̃ = D f r̂, (42)

p̂ = D f p̃, û = Deũ, λ f = D f λ̃ f , λe = Deλ̃e. (43)

The scaling matrices D f , De, E f , and Ee are diagonal with positive diagonal entries. We
first choose D f and De so that the absolute values of the diagonal entries of Ã f and Ãe

are one. Then the matrices E f and Ee are defined by the property that the �2 norms of the
columns of B̃e and B̃ f are one. It is easy to see that the scaling results in a dimensionless
system. In addition, the scaling reveals numerical near decoupling of the fluid and the elastic
problem; cf., Section 6 below.

We now eliminate the variables p̂ and û from the augmented system (40) and solve the
resulting reduced system iteratively. Computing p̃ and ũ from the first two equations in (40)
gives

p̃ = Ã−1
f

(
r̃ − B̃T

f λ̃ f + T̃Jeũ�

)
, (44)
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ũ = Ã−1
e

(−B̃T
e λ̃e + T̃T J f p̃�

)
. (45)

Substituting p̃ and ũ from (44) and (45) into the rest of the equations in (40), we obtain
the reduced system

Fx = b, (46)

where

F =




−B̃ f Ã−1
f B̃T

f 0 0 B̃ f Ã−1
f T̃Je

0 −B̃eÃ−1
e B̃T

e B̃eÃ−1
e T̃T J f 0

−JT
f Ã−1

f B̃T
f 0 −I JT

f Ã−1
f T̃Je

0 −JeÃ−1
e B̃T

e JeÃ−1
e T̃T J f −I


, (47)

and

x =




λ f

λe

p̃�

ũ�


, b =




−B̃ f Ã−1
f r̃

0

JT
f Ã−1

f r̃

0


.

Evaluating the matrix vector product Fx requires the solution of one independent problem
per subdomain, because

F




λ f

λe

p̃�

ũ�


 =




B̃ f q̃

B̃eṽ

JT
f q̃ − p̃�

JT
e ṽ − ũ�


 , where

{
q̃ = Ã−1

f

(−B̃T
f λ̃ f + T̃Jeũ�

)
,

ṽ = Ã−1
e

(−B̃T
e λ̃e + T̃T J f p̃�

)
.

The present method consists of solving the linear system (46) by GMRES. For the coupled
problem, the matrix Q of coarse space generators is

Q =




D f B f Y f 0 0 0

0 DeBeYe 0 0

0 0 D f JT
f Z f 0

0 0 0 DeJT
e Ze


, (48)

where Y f and Ye are given by (21) and (34), respectively, as matrices of columns that are
discrete representation of plane waves in the subdomains. The matrices Z f and Ze are of
the same form as Y f and Ye, respectively. Because the multiplication by JT

f and JT
e selects

only values of degrees of freedoms on the wet interface, the only blocks of Z f and Ze that
contribute to Q are blocks for subdomains adjacent to the wet interface.

6. EXPLANATION OF CONVERGENCE PROPERTIES

Convergence of the method can be explained by an analysis of the spectrum of the iteration
operator. From well-known properties of Krylov space methods [31], it follows that in m
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iterations, the residual is reduced by the factor of at least Cr(m), where

r(m) = min
deg(p)=m

p(0)=1

max
λ∈σ(PF)

λ�=0

|p(λ)|.

Here, the minimum is taken over complex polynomials and the maximum over the eigenval-
ues of PF. It is well known that r(m) decreases fast with m if the eigenvalues are clustered
around a point other than zero. Such clustering has been observed in FETI-H [3].

We argue that because of the form of the operator F, the same clustering can be expected
for the coupled problem. Aside from the diagonal scaling, the first diagonal block of F in (47)
is same as in the FETI-H method for the Helmholtz equation, cf. (17), and second diagonal
block is same as in the extension of FETI-H for the elastodynamic problem, cf. (33). FETI-H
is known to converge fast, so one can expect that on the subspace defined by the coarse
correction, these two diagonal blocks will be well conditioned. The off-diagonal blocks all
contain the inverse of Ã f or Ãe, which are discretizations of differential operators. Hence,
the off-diagonal blocks resemble discretizations of compact operators, and the structure of
Eq. (46) resembles discretization of a Fredholm integral equation of the second kind, which
is well conditioned because its eigenvalues cluster about a point different from zero. Such
clustering is indeed observed computationally.

For a very rigid scatterer, the problem becomes numerically decoupled in the limit.
Indeed, if the Lamé coefficient µ → +∞, the scaling matrix De → 0, hence from (41),
T̃ → 0, and one has

F →




−B̃ f Ã−1
f B̃T

f 0 0 0

0 −B̃eÃ−1
e B̃T

e 0 0

−JT
f Ã−1

f B̃T
f 0 −I 0

0 −JeÃ−1
e B̃T

e 0 −I


, as µ → +∞. (49)

We show that the decoupling indicated by (49) takes place for a wide range of parameters
important in practice. Assume that the mesh is quasi-uniform with characteristic spacing h.
Then ‖T‖ ≈ hn−1. Further assuming that kh � 1, which should be the case for approxima-
tion reasons, it is easy to see that ‖D f ‖ ≈ (hn−2)−1/2. Similarly, if ω2h2ρe � µ, we have
‖De‖ ≈ (ω2ρ f µhn−2)−1/2, and it follows that

‖T̃‖ = ω2ρ f ‖D f T̂De‖ ≤ ω2ρ f ‖D f ‖ ‖T̂‖ ‖De‖
≈ ω2ρ f (h

n−2)−1/2hn−1(ω2ρ f µhn−2)−1/2

= ωhρ
1/2
f µ−1/2 = khc f ρ

1/2
f µ−1/2.

Consequently, the system will become numerically decoupled if

khc f ρ
1/2
f µ−1/2 � 1. (50)

In the computations reported in Section 9, the condition (50) is satisfied, because
khc f ρ

1/2
f µ−1/2 was of the order of at most 10−3.

Figures 3 and 4 show one representative case of the spectrum of the iteration operator
PF from (19) for the Neumann boundary condition on the scatterer, and for the elastic
scatterer, respectively. The problem setting was as in Section 9, with h = 1/40, k = 10,



108 JAN MANDEL

FIG. 3. Spectrum of the FETI-H iteration operator.

FIG. 4. Spectrum of the iteration operator for coupled problem.
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4 × 4 fluid subdomains and, for Fig. 4, also 2 × 2 solid subdomains. The coarse space had
four directions for fluid waves, both for the multipliers and for the wet interface.

The figures show that in both cases the spectrum is clustered around a point other than
the origin. For the coupled problem, there are few more eigenvalues near the origin and
some clustered around −1. The effect of adding the elastic scatterer shows in few extra
eigenvalues close to the cluster and a minor change in other eigenvalues.

7. IMPLEMENTATION CHOICES

Some implementation details of the algorithms described in Sections 3–5 are slightly
different than in FETI-H or were left open and will be specified in this section. The differ-
ences are essentially only different choices in implementation. They are not related to the
treatment of the coupled problem and do not change the essence of either method, though
they of course influence numerical results.

We have generated the matrices B f and Be by creating one equation with coefficients
0, 1, −1 for each pair of subdomains and a degree of freedom they share, in the same way
as in FETI, e.g. [27]. To avoid redundant constraints, we have orthogonalized the rows of
the matrices using the QR algorithm. The resulting matrices are still sparse. FETI-H does
not orthogonalize the constraint matrices and either leaves redundant constraints in or takes
care not to create them.

The columns of the matrix of coarse space generators Q from (48) are usually linearly
dependent. One reason is aliasing of modes from two subdomains on their interface. Another
reason is that the basis of plane waves is ill conditioned. To obtain a stable numerical
algorithm, we have first orthogonalized the columns of Ys

f and Ys
e and then the matrix Q,

dropping linearly dependent columns in each step. The resulting matrices are still sparse.
Since the columns of Q are now linearly independent, there is a chance that the coarse system
matrix QT FQ, whose decomposition is needed in the coarse coarse correction (20), may be
nonsingular. Although this is not guaranteed, the coarse matrices in numerical experiments
were always nonsingular. In the case of a singular matrix, one can use a pseudoinverse.
FETI-H does not orthogonalize the coarse space generators and deals with the resulting
singular coarse matrix by masking zero pivots.

We have used GMRES provided with MATLAB as the iterative solver, while FETI-H
uses GCR. The two methods are mathematically equivalent, minimizing the �2 norm of the
residual over the Krylov space. GMRES is more complicated and more numerically stable.
For more information on Krylov space solvers, see [31].

8. COMPLEXITY

To interpret computational results, one needs to estimate the effect of the number of
subdomains, subdomain size, and coarse space size on the computational complexity of the
method. We omit the effect of the orthogonalization of the constraint matrices and coarse
space generators on their nonzero structure, and assume that the asyptotic complexity of
the algoritm used for the LU decomposition of a block sparse matrix of order nm, where
m is the order of dense blocks, is proportional to nαm3, and the asymptotic complexity of
the multiplication of a vector by the inverse of the LU factors (i.e., the solution) is nβm2.
For example, for topologically two-dimensional problems and band or profile methods
with natural ordering, α = 2 and β = 1.5; for fully sparse methods, the complexity is less
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[32]. The complexity of the present method is dominated by the LU decomposition of the
subdomain matrices, i.e., the diagonal blocks of Ãe and Ã f , and the creation and the LU
decomposition of the coarse matrix QT FQ.

Denote by N the total number of degrees of freedom, by Ns the number of subdomains,
by Ni the total number of degrees of freedom on subdomain interfaces, and by Nc the
number of coarse space basis vectors per subdomain. Assume that all subdomains are about
the same size, and there are Nt interfaces between the subdomains. The number of degrees
of freedom per subdomain is N/Ns on the average.

The total cost of the LU decomposition of the subdomain matrices is about Ns(N/Ns)
α

and the cost of one solution is Ns(N/Ns)
β . We now estimate the cost of creating the first

diagonal block of the coarse matrix, C = (D f B f Y f )
T (−B̃ f Ã−1

f B̃T
f )D f B f Y f . This matrix

has full blocks which arize by the interaction of Nc coarse space vectors from two subdo-
mains with a common neighbor; hence, it is a topologically n dimensional block matrix of
order asymptotically Ns Nc, with average block size Nc. Computing (−B̃ f Ã−1

f B̃T
f )D f B f Y f

requires Nc Nt solutions of subdomain problems at (N/Ns)
β each. Multiplication of the re-

sult by (D f B f Y f )
T adds about N 2

c Ns(Ni/Ns). The LU decomposition of C costs Nα
s N 3

c

and the solution of a system with C costs Nβ
s N 2

c . Hence, we get asymptotic estimate of the
dominant cost of the setup phase

Tsetup ≈ Ns(N/Ns)
α + Nc Nt (N/Ns)

β + Nα
s N 3

c + N 2
c Ni , (51)

and the dominant cost per iteration,

Titeration ≈ Ns(N/Ns)
β + Nβ

s N 2
c . (52)

The estimates for the fluid and elastic subdomains should be done separately following (51)
and (52) and added together. The complexity of the terms added by the coupling is easily
seen to be of lower order. It should be noted that the complexity estimates (51) and (52) are
not specific to the present method and apply to any nonoverlapping domain decomposition
method with a coarse space applied in a similar manner as here, such as the FETI or the
Balancing Neumann–Neumann [33] method for positive definite problems.

9. COMPUTATIONAL RESULTS

We consider a model 2D problem with a scatterer in the center of a waveguide; cf.,
Fig. 1. The fluid domain � f is a square with side 1 m, filled with water with density
ρ f = 1000 kg m−3 and speed of sound c f = 1500 m s−1. The scatterer is a square in the
center of the fluid domain, with side 0.2 m unless specified otherwise in some problems,
and consisting of aluminum with density ρe = 2700 kg m−3 and Lamé elasticity coefficients
λ = 5.5263.1010 N m−2, µ = 2.595.1010 N m−2.

The fluid domain and the solid domain are discretized by bilinear square elements on
a uniform mesh with meshsize h. Both domains are divided independently into m by n
subdomains by dividing their horizontal sides into m intervals of the same length and the
vertical sides into n intervals of the same length; cf., Fig. 2.

In all cases, the constant function is included in the coarse space for the fluid and the
rigid body modes are included in the coarse space for the solid, both for the multipliers and
for the wet interface.
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The stopping criterion for GMRES iterations was ‖Fx − b‖ < 10−6. The stopping crite-
rion for the iterations does not involve the original variables in the coupled problem (36),
which we write here as as Kz = d. Since the variables have different scales, and, in addi-
tion, the right-hand side in the second block in (36) is zero, the usual relative residual
‖Kz − d‖/‖d‖ is meaningless. Instead, we have evaluated the component-wise scaled
residual

Res = max
i

|di − ∑
j Ki j z j |∑

j |Ki j ||z j | . (53)

The numerical results for the model problem are summarized in Tables 1 to 4. The lines
in the tables are organized in groups. The first line in the group is the result for the FETI-H
method with Neumann condition instead of the elastic scatterer. The following lines are for
the elastic scatterer, and they show the number of iterations for increasing the number of

TABLE I

Decreasing h, k3h2 Constant, Constant Number of Elements Per Subdomain

Problem description Coarse directions
Number of

Subdomains λ Wet degrees of freedom

h k Fl. Sol. Fl. Sol. Fl. Sol. Orig. Red. Crs. Iter. Res.

1/40 10 2 × 2 rigid 4 1632 68 11 10 9.2e-07
1/40 10 2 × 2 1 × 1 4 0 0 0 1794 140 18 14 3.4e-07
1/40 10 2 × 2 1 × 1 4 0 4 0 1794 140 34 11 7.1e-07
1/40 10 2 × 2 1 × 1 4 0 4 4 1794 140 35 11 7e-07
1/40 10 2 × 2 1 × 1 4 4 4 4 1794 140 35 11 7e-07
1/40 10 2 × 2 rigid 8 1632 68 18 8 4.9e-07
1/40 10 2 × 2 1 × 1 8 0 4 0 1794 140 41 9 5.1e-07
1/40 10 2 × 2 1 × 1 8 4 4 4 1794 140 42 9 4.7e-07
1/40 10 2 × 2 1 × 1 8 4 8 8 1794 140 58 9 3e-07
1/40 10 2 × 2 1 × 1 8 8 8 8 1794 140 58 9 3e-07
1/80 16 4 × 4 rigid 4 6336 464 63 15 4.5e-07
1/80 16 4 × 4 2 × 2 4 0 0 0 6914 674 84 25 7.6e-07
1/80 16 4 × 4 2 × 2 4 0 4 0 6914 674 100 24 5.7e-07
1/80 16 4 × 4 2 × 2 4 0 4 4 6914 674 102 24 5.8e-07
1/80 16 4 × 4 2 × 2 4 4 4 4 6914 674 111 21 1.3e-06
1/80 16 4 × 4 rigid 8 6336 464 102 11 6e-07
1/80 16 4 × 4 2 × 2 8 0 4 0 6914 674 139 21 6.8e-07
1/80 16 4 × 4 2 × 2 8 4 4 4 6914 674 150 18 8.8e-07
1/80 16 4 × 4 2 × 2 8 4 8 8 6914 674 172 18 8.4e-07
1/80 16 4 × 4 2 × 2 8 8 8 8 6914 674 183 13 1.2e-06
1/160 25 8 × 8 rigid 4 24960 2240 287 17 1.6e-06
1/160 25 8 × 8 4 × 4 4 0 0 0 27138 2930 352 55 7.5e-07
1/160 25 8 × 8 4 × 4 4 0 4 0 27138 2930 368 43 1.3e-06
1/160 25 8 × 8 4 × 4 4 0 4 4 27138 2930 378 43 1.2e-06
1/160 25 8 × 8 4 × 4 4 4 4 4 27138 2930 426 40 7e-07
1/160 25 8 × 8 rigid 8 24960 2240 462 16 4.4e-07
1/160 25 8 × 8 4 × 4 8 0 4 0 27138 2930 543 33 1.3e-06
1/160 25 8 × 8 4 × 4 8 4 4 4 27138 2930 601 31 1.1e-06
1/160 25 8 × 8 4 × 4 8 4 8 8 27138 2930 635 30 1.3e-06
1/160 25 8 × 8 4 × 4 8 8 8 8 27138 2930 695 20 1.7e-06
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TABLE II

Decreasing h, k3h2 Constant, Same Subdomains

Problem description Coarse directions
Number of

Subdomains λ Wet degrees of freedom

h k Fl. Sol. Fl. Sol. Fl. Sol. Orig. Red. Crs. Iter. Res.

1/40 10 4 × 4 rigid 4 1632 240 63 11 7.3e-07
1/40 10 4 × 4 2 × 2 4 0 0 0 1794 354 84 18 3.7e-07
1/40 10 4 × 4 2 × 2 4 0 4 0 1794 354 100 16 1.1e-06
1/40 10 4 × 4 2 × 2 4 0 4 4 1794 354 104 16 1.2e-06
1/40 10 4 × 4 2 × 2 4 4 4 4 1794 354 112 15 3.7e-07
1/40 10 4 × 4 rigid 8 1632 240 102 7 5.4e-07
1/40 10 4 × 4 2 × 2 8 0 4 0 1794 354 139 13 5e-07
1/40 10 4 × 4 2 × 2 8 4 4 4 1794 354 151 11 7e-07
1/40 10 4 × 4 2 × 2 8 4 8 8 1794 354 175 11 6.5e-07
1/40 10 4 × 4 2 × 2 8 8 8 8 1794 354 187 7 1.2e-06
1/80 16 4 × 4 rigid 4 6336 464 63 15 4.5e-07
1/80 16 4 × 4 2 × 2 4 0 0 0 6914 674 84 25 7.6e-07
1/80 16 4 × 4 2 × 2 4 0 4 0 6914 674 100 24 5.7e-07
1/80 16 4 × 4 2 × 2 4 0 4 4 6914 674 102 24 5.8e-07
1/80 16 4 × 4 2 × 2 4 4 4 4 6914 674 111 21 1.3e-06
1/80 16 4 × 4 rigid 8 6336 464 102 11 6e-07
1/80 16 4 × 4 2 × 2 8 0 4 0 6914 674 139 21 6.8e-07
1/80 16 4 × 4 2 × 2 8 4 4 4 6914 674 150 18 8.8e-07
1/80 16 4 × 4 2 × 2 8 4 8 8 6914 674 172 18 8.4e-07
1/80 16 4 × 4 2 × 2 8 8 8 8 6914 674 183 13 1.2e-06

1/160 25 4 × 4 rigid 4 24960 912 63 28 1.5e-06
1/160 25 4 × 4 2 × 2 4 0 0 0 27138 1314 84 50 1.1e-06
1/160 25 4 × 4 2 × 2 4 0 4 0 27138 1314 100 43 5.2e-07
1/160 25 4 × 4 2 × 2 4 0 4 4 27138 1314 101 42 1.4e-06
1/160 25 4 × 4 2 × 2 4 4 4 4 27138 1314 109 39 1e-06
1/160 25 4 × 4 rigid 8 24960 912 102 17 7.7e-07
1/160 25 4 × 4 2 × 2 8 0 4 0 27138 1314 139 35 5.7e-07
1/160 25 4 × 4 2 × 2 8 4 4 4 27138 1314 148 30 1.4e-06
1/160 25 4 × 4 2 × 2 8 4 8 8 27138 1314 171 28 1.5e-06
1/160 25 4 × 4 2 × 2 8 8 8 8 27138 1314 181 24 1.2e-06
1/320 40 4 × 4 rigid 4 99072 1808 63 56 1.8e-06
1/320 40 4 × 4 2 × 2 4 0 0 0 107522 2594 84 87 8.9e-07
1/320 40 4 × 4 2 × 2 4 0 4 0 107522 2594 100 79 4.2e-07
1/320 40 4 × 4 2 × 2 4 0 4 4 107522 2594 100 79 4.2e-07
1/320 40 4 × 4 2 × 2 4 4 4 4 107522 2594 108 73 8e-07
1/320 40 4 × 4 rigid 8 99072 1808 102 24 1.5e-06
1/320 40 4 × 4 2 × 2 8 0 4 0 107522 2594 139 48 5.4e-07
1/320 40 4 × 4 2 × 2 8 4 4 4 107522 2594 147 43 5e-07
1/320 40 4 × 4 2 × 2 8 4 8 8 107522 2594 171 40 7.7e-07
1/320 40 4 × 4 2 × 2 8 8 8 8 107522 2594 183 34 5.3e-07

coarse space functions, that is, the columns of Q. The headings in the tables are:

1. 1/h—the mesh spacing
2. k—the wave number
3. Subdomains Fl.—the number of fluid subdomains
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TABLE III

Increasing the Number of Fluid and Elastic Subdomains, Obstacle Size 0.5

Problem description Coarse directions
Number of

Subdomains λ Wet degrees of freedom

h k Fl. Sol. Fl. Sol. Fl. Sol. Orig. Red. Crs. Iter. Res.

1/200 80 2 × 2 rigid 4 30600 204 11 29 1.2e-06
1/200 80 2 × 2 2 × 2 4 0 0 0 51002 1422 32 128 8.7e-07
1/200 80 2 × 2 2 × 2 4 0 4 0 51002 1422 48 125 7.1e-07
1/200 80 2 × 2 2 × 2 4 0 4 4 51002 1422 48 125 7.1e-07
1/200 80 2 × 2 2 × 2 4 4 4 4 51002 1422 56 117 6.4e-07
1/200 80 2 × 2 rigid 8 30600 204 18 22 7.5e-07
1/200 80 2 × 2 2 × 2 8 0 4 0 51002 1422 55 117 5.4e-07
1/200 80 2 × 2 2 × 2 8 4 4 4 51002 1422 63 108 6.2e-07
1/200 80 2 × 2 2 × 2 8 4 8 8 51002 1422 87 99 7e-07
1/200 80 2 × 2 2 × 2 8 8 8 8 51002 1422 99 86 6.9e-07
1/200 80 4 × 4 rigid 4 30600 612 36 73 2.2e-07
1/200 80 4 × 4 4 × 4 4 0 0 0 51002 2666 105 no convergence
1/200 80 4 × 4 4 × 4 4 0 4 0 51002 2666 121 no convergence
1/200 80 4 × 4 4 × 4 4 0 4 4 51002 2666 132 no convergence
1/200 80 4 × 4 4 × 4 4 4 4 4 51002 2666 180 192 7.6e-07
1/200 80 4 × 4 rigid 8 30600 612 60 49 2.6e-07
1/200 80 4 × 4 4 × 4 8 0 4 0 51002 2666 145 200 3.9e-06
1/200 80 4 × 4 4 × 4 8 4 4 4 51002 2666 204 163 6.8e-07
1/200 80 4 × 4 4 × 4 8 4 8 8 51002 2666 237 146 7.7e-07
1/200 80 4 × 4 4 × 4 8 8 8 8 51002 2666 297 107 1e-06

4. Subdomain Sol.—the number of elastic subdomains, or “rigid” if only the Helmholtz
equation in the fluid is solved

5. Coarse directions λ Fl.—the number of directions per fluid subdomain of plane waves
for multipliers in the coarse problem

6. Coarse directions λ Sol.—the number of directions per elastic subdomain of plane
pressure and shear waves and plane shear waves for multipliers in the coarse problem

7. Coarse directions Wet Fl.—the number of directions per fluid subdomain of plane
waves for the wet interface in the coarse problem

8. Coarse directions Wet Sol.—the number of directions per elastic subdomain of plane
pressure and shear waves for the wet interface in the coarse problem

9. Number of degrees of freedom Orig.—the size of the algebraic problem solved
10. Number of degrees of freedom Red.—the number of degrees of freedom in the

reduced problem, i.e., the order of the matrix F
11. Number of degrees of freedom Crs.—the size of the coarse problem after orthogo-

nalization of the coarse space generators
12. Iter.—the number of iterations
13. Res.—the component-wise scaled residual of the coupled problem from (53)

The scaled residual (53) was of the same order of magnitude as the tolerance in the
stopping criterion or smaller.

The results in Tables I and II show scalability when the mesh is refined and the frequency
increased while keeping k3h2 constant, which is needed to avoid pollution by the phase
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TABLE IV

Increasing the Number of Elastic Subdomains, Obstacle Size 0.9

Problem description Coarse directions
Number of

Subdomains λ Wet degrees of freedom

h k Fl. Sol. Fl. Sol. Fl. Sol. Orig. Red. Crs. Iter. Res.

1/200 32 2 × 2 rigid 4 8360 44 11 7 1e-06
1/200 32 2 × 2 2 × 2 4 0 0 0 73882 2222 32 99 4.4e-07
1/200 32 2 × 2 2 × 2 4 0 4 0 73882 2222 48 93 6.9e-07
1/200 32 2 × 2 2 × 2 4 0 4 4 73882 2222 48 93 6.9e-07
1/200 32 2 × 2 2 × 2 4 4 4 4 73882 2222 56 87 5.8e-07
1/200 32 2 × 2 rigid 8 8360 44 18 6 1.7e-07
1/200 32 2 × 2 2 × 2 8 0 4 0 73882 2222 55 92 5.6e-07
1/200 32 2 × 2 2 × 2 8 4 4 4 73882 2222 63 85 5.7e-07
1/200 32 2 × 2 2 × 2 8 4 8 8 73882 2222 87 66 1.3e-06
1/200 32 2 × 2 2 × 2 8 8 8 8 73882 2222 99 55 1e-06
1/200 32 2 × 2 rigid 4 8360 44 11 7 1e-06
1/200 32 2 × 2 4 × 4 4 0 0 0 73882 3694 76 137 4e-07
1/200 32 2 × 2 4 × 4 4 0 4 0 73882 3694 92 128 5.8e-07
1/200 32 2 × 2 4 × 4 4 0 4 4 73882 3694 107 126 7.2e-07
1/200 32 2 × 2 4 × 4 4 4 4 4 73882 3694 155 101 9.4e-07
1/200 32 2 × 2 rigid 8 8360 44 18 6 1.7e-07
1/200 32 2 × 2 4 × 4 8 0 4 0 73882 3694 99 126 5.4e-07
1/200 32 2 × 2 4 × 4 8 4 4 4 73882 3694 162 99 9.6e-07
1/200 32 2 × 2 4 × 4 8 4 8 8 73882 3694 187 76 8.9e-07
1/200 32 2 × 2 4 × 4 8 8 8 8 73882 3694 247 45 9.4e-07

error and to keep the error decreasing with h for the Helmholtz equation; cf., Ihlenburg and
Babuška [34]. We first keep the number of elements per subdomain constant and then we
keep the number of subdomains constant. Tables III and IV show convergence for increasing
the number of elastic subdomains. Because we want to isolate the effect of the elastic
domain, the obstacle is made larger. The fluid domain is smaller (in the test problems in
Table IV, the fluid domain consists of just few layers of elements), so the number of iterations
for the rigid case is much lower.

Clearly, increasing the size of the coarse space decreases the number of iterations. The
prototype implementation was done in MATLAB; hence, we do not report timings. However,
we should note that the most time-consuming operation was the generation of the data and
assembling the subdomain matrices, followed by the setup of the iterative method; the
iterations themselves were only a small fraction of the overall time (when the method
converged).

10. CONCLUSION

We have presented a new iterative substructuring method for coupled fluid–solid scatter-
ing problems. The computational results indicate that the method is scalable with respect
to mesh size, frequency, and the number of subdomains. The growth of the number of itera-
tions can be controlled by increasing the size of the coarse space. Numerical calculation of
the spectrum of the iteration operator suggests that the fast convergence is due to clustering
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of the spectrum. In most cases, the resulting number of iterations is the same or slightly
larger than for the FETI-H method for the same problem with the Neumann boundary
condition instead of an elastic scatterer.
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28. J. L. Lions, Contribution à un problème de M. M. Picone, Ann. Mat. Pura Appl. (4) 41, 201 (1956).

29. V. K. Varadan and V. V. Varadan, Acoustic, electromagnetic, and elastodynamic fields, in Field Representations
and Introduction to Scattering, edited by V. K. Varadan and V. V. Varadan (North-Holland, Amsterdam, 1991).

30. Henri J.-P. Morand and Roger Ohayon, Fluid Structure Interaction (Wileys, Chichester, 1995).

31. Anne Greenbaum, Iterative Methods for Solving Linear Systems, (Soc. for Industr. & Appl. Math.,
Philadelphia, 1997).

32. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices (Clarendon, Oxford, 1986).

33. Jan Mandel, Balancing domain decomposition, Comm. Numer. Meth. Eng. 9, 233 (1993).
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